Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(6): e0275353, 2023.
Article in English | MEDLINE | ID: mdl-37319254

ABSTRACT

Shigellaa Gram-negative, non-motile bacillus, is the primary causative agent of the infectious disease shigellosis, which kills 1.1 million people worldwideevery year. The children under the age of five are primarily the victims of this disease. This study has been conducted to assess the prevalence of shigellosis through selective plating, biochemical test and conventional PCR assays, where the samples were collected from suspected diarrheoal patients. Invasive plasmid antigen H (ipaH) and O-antigenic rfc gene were used to identify Shigella spp. and S. flexneri respectively. For validation of these identification, PCR product of ipaH gene of a sample (Shigella flexneri MZS 191) has been sequenced and submitted to NCBI database (GenBank accession no- MW774908.1). Further this strain has been used as positive control. Out of 204, around 14.2% (n = 29)(P> 0.01) pediatric diarrheoal cases were screened as shigellosis. Another interesting finding was that most of shigellosis affected children were 7 months to 1 year (P> 0.01).The significance of this study lies in the analyses of the occurrenceand the molecular identification of Shigellaspp. and S. flexneri that can be utilized in improving the accurate identification and the treatment of the most severe and alarming shigellosis.


Subject(s)
Dysentery, Bacillary , Shigella , Child , Humans , Dysentery, Bacillary/diagnosis , Dysentery, Bacillary/epidemiology , Bangladesh/epidemiology , Shigella/genetics , Diarrhea/epidemiology , Diarrhea/complications , Shigella flexneri/genetics
2.
Microbiol Insights ; 16: 11786361221150760, 2023.
Article in English | MEDLINE | ID: mdl-36726577

ABSTRACT

Typhoid is a major public health concern. Even though antibiotics are usually used to treat typhoid fever, the spread of multi drug resistant Salmonella typhi is making antibiotics much less effective. This study was conducted to assess the prevalence of multidrug-resistant Salmonella typhi from the clinical samples. During this study, 154 blood samples of suspected typhoid patients were collected from the hospital and diagnostic center located in Chattogram City, Bangladesh. Isolation and identification of Salmonella typhi was done by both biochemical tests. PCR analysis was also done for the confirmation of biochemical result. Antimicrobial susceptibility test was performed according to the Kirby-Bauer disk diffusion method against ampicillin, chloramphenicol, cefepime, cotrimoxazole, ceptriaxone, ciprofloxacin, nalidixic acid, and azithtomycin. Out of 154, 21 (13.64%) isolates were identified as Salmonella typhi and the prevalence of typhoid in Chattogram, Bangladesh was 13.64% (n = 21). It was also found that children under the age of 5 are the more vulnerable target of Salmonella typhi infection. Antibiotic resistance profiling revealed 85% isolates were Multi-Drug Resistant (MDR) and highest resistance was found in case of Nalidixic acid. Although, most of the isolated Salmonella typhi were MDR, first generation antibiotics Co-trimoxazile, Chloramphenicol, and Ampicillin were found effective against Salmonella typhi.

3.
Microbiol Spectr ; 10(5): e0115122, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36094198

ABSTRACT

Epstein-Barr virus (EBV) is a lymphotropic virus responsible for numerous epithelial and lymphoid cell malignancies, including gastric carcinoma, Hodgkin's lymphoma, nasopharyngeal carcinoma, and Burkitt lymphoma. Hundreds of thousands of people worldwide get infected with this virus, and in most cases, this viral infection leads to cancer. Although researchers are trying to develop potential vaccines and drug therapeutics, there is still no effective vaccine to combat this virus. In this study, the immunoinformatics approach was utilized to develop a potential multiepitope subunit vaccine against the two most common subtypes of EBV, targeting three of their virulent envelope glycoproteins. Eleven cytotoxic T lymphocyte (CTL) epitopes, 11 helper T lymphocyte (HTL) epitopes, and 10 B-cell lymphocyte (BCL) epitopes were predicted to be antigenic, nonallergenic, nontoxic, and fully conserved among the two subtypes, and nonhuman homologs were used for constructing the vaccine after much analysis. Later, further validation experiments, including molecular docking with different immune receptors (e.g., Toll-like receptors [TLRs]), molecular dynamics simulation analyses (including root means square deviation [RMSD], root mean square fluctuation [RMSF], radius of gyration [Rg], principal-component analysis [PCA], dynamic cross-correlation [DCC], definition of the secondary structure of proteins [DSSP], and Molecular Mechanics Poisson-Boltzmann Surface Area [MM-PBSA]), and immune simulation analyses generated promising results, ensuring the safe and stable response of the vaccine with specific immune receptors after potential administration within the human body. The vaccine's high binding affinity with TLRs was revealed in the docking study, and a very stable interaction throughout the simulation proved the potential high efficacy of the proposed vaccine. Further, in silico cloning was also conducted to design an efficient mass production strategy for future bulk industrial vaccine production. IMPORTANCE Epstein-Barr virus (EBV) vaccines have been developing for over 30 years, but polyphyletic and therapeutic vaccines have failed to get licensed. Our vaccine surpasses the limitations of many such vaccines and remains very promising, which is crucial because the infection rate is higher than most viral infections, affecting a whopping 90% of the adult population. One of the major identifications covers a holistic analysis of populations worldwide, giving us crucial information about its effectiveness for everyone's unique immunological system. We targeted three glycoproteins that enhance the virulence of the virus to design an epitope-based polyvalent vaccine against two different strains of EBV, type 1 and 2. Our methodology in this study is nonconventional yet swift to show effective results while designing vaccines.


Subject(s)
Epstein-Barr Virus Infections , Viral Vaccines , Humans , Herpesvirus 4, Human , Molecular Docking Simulation , Epstein-Barr Virus Infections/prevention & control , Vaccines, Subunit/chemistry , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/metabolism , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/metabolism , Vaccines, Combined , Computational Biology/methods
4.
Microbiol Insights ; 14: 11786361211016808, 2021.
Article in English | MEDLINE | ID: mdl-34035650

ABSTRACT

In developing countries, the occurrence of antibiotic resistance is increasing day by day and antibiotic resistant microorganisms are being found in almost every environmental setting. Plasmids are considered as the main vector in the procurement and propagation of antibiotic resistance in many microorganisms such as Escherichia coli (E. coli). The goal of this study was to examine the antibiotic resistance and screening of plasmid in E. coli strains which were previously identified from human sewage samples. During this study antibiotic susceptibility of E. coli isolates were determined by Kirby-Bauer disk diffusion method against 5 antibiotics (ampicilin, ceftriaxone, amoxicillin, ciprofloxacin, azithromycin). Furthermore, plasmid extraction of each isolate was done according to the protocol of FavorPrepTMPlasmid Mini Kit and plasmid profiling was done by agarose gel electrophoresis. In antibiotic sensitivity test, all E. coli strains showed resistance to ampicilin, amoxicillin, and ceftriaxone. In the plasmid profiling, it was revealed that all the isolates of E. coli harbored plasmids. The plasmid sizes ranged from approximately 1.5 to 15 kb. The findings of this study prove the consequences of antibiotic resistance as well as relationship of plasmid with antibiotic resistance which necessitates proper surveillance on antibiotic usage in the developing countries.

5.
J Genet Eng Biotechnol ; 15(1): 103-113, 2017 Jun.
Article in English | MEDLINE | ID: mdl-30647647

ABSTRACT

Spillage of furnace oil is a more frequent event in recent times. In this study, environmental samples from furnace oil spillage sites of the Shela River, the Sundarbans, Bangladesh, were collected after three weeks of spillage. Serial dilution was applied and total seven bacterial isolates were separated as pure cultures. The oil-degrading potentiality of all seven isolates was further assessed, confirmed and compared with the growth pattern in furnace oil supplemented media, 2, 6-dichlorophenolindophenol test, and gravimetric analysis. After 7 days of incubation, isolates SS3, RW2, and SB degraded 56%, 43%, and 52% of supplemented furnace oil, respectively. The top three hydrocarbonoclastic bacterial isolates were selected as potential and identified as Pseudomonas aeruginosa (SS3), Bacillus sp. (RW2), and Serratia sp. (SB). All three isolates showed significant oil-degrading capacity compared to negative control, when incubated in sterile pond water supplemented with 2% furnace oil, suggesting them as potential bioremediation agents.

SELECTION OF CITATIONS
SEARCH DETAIL
...